
Table of ContentsTable of Contents...1License Agreement..6Trademarks and Copyright..7About ArianeSoft..8About the Pocket Programming Language (PPL)..8About PIDE..8Values and Benefits..8About This Manual..9Organization..9Conventions...9Installation...10Requirements...10Understanding the Interface...11Menu Bar..12Action Buttons...12Components..13Work Area...14Project Manager...15Code View...17Properties/Events..19Properties...20Property Editors...21Code Navigator..41Debugging Console..42
End-User Manual—Version 2.0 Page 1 of 186

Tips on PIDE..44Creating and Managing Projects...46Creating a New Project...46Opening a File into the Work Area..47Saving a Project...49Close an Open Project...50Working with Code...51About the Pocket Programming Language (PPL)..51Accessing the Code View...51Commenting code..52Formatting Code..52Adding Objects..53To add an application object to the code,..56Collapsing/Expanding Nodes...56Adding Color to Code...56To add a RGB color to your code,..56Adding Characters...58Creating Notes..59Edit a Note..61Procedure List...61Components..62Navigating Code..62The Design Environment...64Drag and Drop Components...64Auto Create..65Sub-Class...65
End-User Manual—Version 2.0 Page 2 of 186

Expand Class..66Edit..66Edit Code...66Application Object Properties and Events...66Properties Panel...67Events Panel..69Layout...71Add Elements..73Position Elements..74Edit Control Code...75Non Visual Elements..75Events and Properties...76Creating An Event...77Adding Objects within Events...80Testing Projects...83Design-Time Testing...83Breakpoints..83Code Stepping...85Run-time Testing..86Profiling..87Watches..87Debug Console...88Debug Tab...88Errors Tab..88Warnings Tab..89Compiler Messages Tab..89
End-User Manual—Version 2.0 Page 3 of 186

Component Library..90What is a Component?..95Class...95Adding Custom Components...95Managing the Component Library...96Creating Your Own Components..97XML Definition Files...97Generate the Component Package..98Creating classes from current project in components panel...99Creating A SQLite Database In PIDE...107Visual Query Editor...115 Select SQL Query and Visual Query Editor...121Insert Query with Visual Query Editor...128Update Query with Visual Query Editor...131Deleting Operation with the help of Visual Query Editor..134Help File Editor ..136Appearance in Help file...138The Help Editor Interface...139Editing .hlp files in PIDE2...140Creating topics from files...141Code Templates In Code Editor..144Using the Default Code Template..144Modifying a .ctp or code template file...147Creating and using a Code Template file..149The PIDE Shell...151Batch Operations In PIDE..157
End-User Manual—Version 2.0 Page 4 of 186

Inserting Files With PIDE..160Package Files With PIDE..162Code Collection Editor..167Object Binding With PIDE...170Packaging for Deployment..175Additional Support...176Appendix A: Available Application Objects..177Appendix B: Figures..179

End-User Manual—Version 2.0 Page 5 of 186

License AgreementThis document and its contents are furnished "as is" for informational purposes only, and are subject to change without notice. ArianeSoft does not represent or warrant that any product or business plans expressed or implied will be fulfilled in any way. Any actions taken by the user of this document in response to the document or its contents will be solely at the risk of the user.ARIANESOFT MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, WITH RESPECT TO THIS DOCUMENT OR ITS CONTENTS, AND HEREBY EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR USE OR NON-INFRINGEMENT. IN NO EVENT SHALL PROOFHQ BE HELD LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING FROM THE USE OF ANY PORTION OF THE INFORMATION.Copyright © 2008 by ArianeSoft . All rights reserved.This document may not be reproduced, photocopied, displayed, transmitted or otherwise copied, in whole or in part, in any form or by any means now known or later developed, such as electronic, optical or mechanical means, without the written agreement of ArianeSoft . Any unauthorized use may be a violation of domestic or international law.

End-User Manual—Version 2.0 Page 6 of 186

Trademarks and CopyrightArianeSoft , Pocket Programming Language, and the ArianeSoft logo are trademarks of ArianeSoft .All other product or company names mentioned are used for identification purposes only, and may be trademarks of their respective owner.

End-User Manual—Version 2.0 Page 7 of 186

About ArianeSoftArianeSoft Inc. was formed in early 2006 by Alain Deschenes, a senior analyst and programmer working primarily in electronic data interchange (EDI). For many years, Alain worked on developing different programming languages. Leveraging his experience in the field of compilers and interpreters, he finally created what he knew would be embraced and welcomed by developers worldwide—PPL. Exhaustive
About the Pocket Programming Language (PPL)Development on PPL started in early 2004. The first version, 1.0, was officially released in September of 2006. Since then, PPL has had great success through the Windows and Windows Mobile community. Many games for the Windows Mobile platform have been developed on the PPL platform and sold around the world.
About PIDEPIDE (Pocket Programming Language Integrated Design Environment) provides a set of tools and workspace to create PPL-based projects designed to run on Windows Mobile, Windows Vista, and Windows XP operating systems.
Values and BenefitsPIDE provides customers with a number of valuable benefits:

• Run-time Execution—run your projects as you are building them, allowing you to see design-time modifications in real-time execution
• Component Library—a built-in component library allows you to quickly add application functionality to the design environment, generating applicable code behind the scenes
• IDE—PIDE leverages the conventions of other IDEs (i.e., VisualStudio, Eclipse, etc.) to create a comfortable and familiar work environment.

End-User Manual—Version 2.0 Page 8 of 186

About This ManualThis manual will provide all the information you need to make the most out of PIDE.
OrganizationThis manual is organized accordingly:

• Installation of the software,
• Understanding the interface,
• Creating and Managing Projects,
• Working with Code,
• The Design Environment,
• Testing Projects,
• The Component Library, and
• Packaging for Deployment.To find what you are looking for quickly, refer to the table of contents and search for a topic based upon a menu item.

ConventionsThis guide uses the following conventions to highlight certain words and phrases that differentiate their meaning visually.
Table 1: Conventions used in this guide

This style… Indicates For example:

italics Notes regarding special
information about a feature

Note: You can also…

bold A feature of the interface or
functionality within PIDE

To open the project, click on
the Open button.

End-User Manual—Version 2.0 Page 9 of 186

InstallationPIDE installation is similar to other windows-based software. To start the installation process, double click on the PIDE setup icon. This will launch the installer.[screen shot][AS: Will document completely when the build is stabilized and includes an installer]
RequirementsPIDE has the following system requirements:

• Windows 2000, Windows XP, Windows Vista compatible computer
• 512mb RAM
• 32mb disk space
• Internet connection

End-User Manual—Version 2.0 Page 10 of 186

Understanding the Interface

Figure 1: Main InterfaceThe PIDE interface is divided into six primary areas:
• Menu bar,
• Action buttons (project and code),
• Components,
• Work area,
• Properties/Events,
• Code Navigator, and
• Debugging Console.

End-User Manual—Version 2.0 Page 11 of 186

Menu Bar

Figure 2: Menu BarThe menu bar provides quick access to many of PIDE’s features. The menus are categorized accordingly:
• File,
• Edit,
• Search,
• Insert,
• View,
• Project,
• Run,
• Tools,
• Components,
• Custom,
• Windows, and
• Help.

Action Buttons

Figure 3: Action ButtonsThe action buttons provide quick access to key project- and code-based activities. These actions buttons will change depending upon the current view of the work area—project management or code view.
End-User Manual—Version 2.0 Page 12 of 186

Components

Figure 4: ComponentsThe components window, located on the left-hand side of the interface, provides quick and easy access to all of PIDE’s components.

End-User Manual—Version 2.0 Page 13 of 186

Work Area

Figure 5: Work areaThe work area, located in the central part of the interface, provides access to the project’s code as well as the design-time workspace (a visual representation of objects with the project and their layout within the project’s interface).There are two views within the Work Area:
• Project Manager, and
• Code View.

As you open application objects into code view, they will appear as buttons above the Project Action Button bar to allow you to easily navigate between code and the project
End-User Manual—Version 2.0 Page 14 of 186

manager.
Project Manager

Figure 6: Project managerThe project manager view shows all of the objects within the project including:
• Project Name,
• Application Name,
• Application Objects (expandable to show sub objects), and
• Notes (expandable to show all notes)To return to the project manager view, click on the Project Manager Button above the Project Action Button bar.When in project manager view, the Action Buttons will change to reflect functionality related to working with projects. These buttons include:

End-User Manual—Version 2.0 Page 15 of 186

Button FunctionCut Cut the selected item out of the projectCopy Copy the selected itemPaste Paste the most recently cut project item into the project at its current locationDelete Delete the selected item from the projectFind object Find an object within the project. Clicking this opens a secondary window.Move up Move the selected item up; only applicable to Notes and Application objectsMove down Move the selected item down; only applicable to Notes and Application objectsAuto create The object is automatically created and initialized. If you do not select it, you will need to create the object (i.e., instance a new copy of the object in memory such as MyForm$ = new PForm)Sub class This creates a sub class that is added to the palette so that you can re-use it by dragging it into the visual editorExpand class Expand on a base class by adding code. All instances of the class used throughout your project will be automatically updated with the additions. Furthermore, adding the expanded class will include your additions.Edit Edit the selected objectEdit source code Open the selected object into the code view windowAdd note Add a note to the selected object; this will open the Note WindowView project source View the source code for the entire project
End-User Manual—Version 2.0 Page 16 of 186

as a hierarchical tree of class and sub classes.
Note: you can also access the functionality of the Project Action Buttons by selecting an item
and right-clicking on it to display the context-sensitive menu.

Code View

Figure 7: Code ViewThe code view shows the application (and all of its objects) as they appear in the Pocket Programming Language.To access the code view, select an application object and then click on the Edit Source Code button in the Project Action button bar.When in code view, the Action Buttons will change to reflect functionality related to working with the code. These buttons include:
Button Function

End-User Manual—Version 2.0 Page 17 of 186

Cut Cut the selected item out of the projectCopy Copy the selected itemPaste Paste the most recently cut project item into the project at its current locationFind Text Find text within the codeFind Previous Occurrence Find the previous occurrence of a text search within the codeFind Next Occurrence Find the next occurrence of a text search within the codeReplace Text Replace text within the codeComment Selected Code Add a comment at the current point of the cursor within the codeInsert RGB Color Add the selected RGB color to the codeCharacters Insert special characters into the code (at the point of the cursor)Format Code Automatically format the code (i.e., indenting)Find Definition Find the definition for the word on which the cursor is currently placed. The search is carried out in the project and the default and included library files. Toggle Navigator Open and close the code navigatorCollapse/Expand Collapse and expand a class or sub-classAdd Note Add a note to the code

End-User Manual—Version 2.0 Page 18 of 186

Properties/Events

Figure 8: Properties/ Events tab

End-User Manual—Version 2.0 Page 19 of 186

The Properties/Events window, located on the right-hand side of the interface, provides quick and easy access to a selected object’s properties or events associated with that object.
PropertiesAn object’s properties include parameters that determine how the object behaves within the code. Like any object that has properties, objects created in PIDE2 with the help of visual programming also have properties that can be used to enhance the functionality of those objects. The table given below contains a list of properties that are linked with visual objects and their explanation:
Property Name DescriptionExpr Specifies an expressionResult The result property is used to assign the result of an object to a variable.Owner This property specifies the owner or the parent of the object. Operation Specifies the operation that will be performed by an object.Source This property determines the source object.Logic This property allows a user to implement logical statements like If or While to the object.LogicAction This property specifies the condition that the logic statements will check.LogicExpr This property specifies the expression to which logic applies to.Action This property determines the action that will be performed by the object.Operator This property specifies the operator that will be used to check the condition.
While properties give a lot of power in the hands of the programmer, the Edit as
Expression feature of PIDE2 provides superior control over properties and their abilities. While working with a property, press Ctrl+F5 key or use Right click -> Edit as Expression to open a code editor window for the property where you will be able to modify the code of the property by using PPL code. Once completed, this code will be executed with the property in the runtime.
Note: Once a property is tweaked with the help of Edit as Expression feature, it is surrounded

End-User Manual—Version 2.0 Page 20 of 186

by brackets to specify that the property has been edited as an expression.

Property EditorsFor increased customizability and flexibility in selecting properties, PIDE offers its users with property editors of different kinds. By using the various property editors available in PIDE, users will not only be able to fine tune their objects and their behavior, they will also be able to decide how their objects will look like. Given below are the various property editors and their description:
Matrix Editor – The matrix editor works with the PMatrix Class that follows the matrix variable. The matrix editor can be used to create or manipulate a matrix by including or excluding rows or columns from it. Users can gain easy access to the matrix editor by double clicking the PMatrix Object.

Figure 9: Matrix Property EditorApart from the usual New, Open, Save, Copy and Paste buttons; Matrix editor also consists of Add columns before, Add columns after, Delete rows, Delete columns, Add row
above and Add row below buttons. As their name suggests, all the buttons are used to perform the things they are named after and do not need any previous experience of creating matrix variables with visual programming.
Color Editor – The color editor in PIDE is just like a color selection tool that can be used to impart a color to the object it is applied on. Users can gain easy access to the color editor by double clicking the Color Property in the Properties Panel. In a color editor, after selecting a color, press the OK button to conform changes.

End-User Manual—Version 2.0 Page 21 of 186

Figure 10: Color Property Editor

Surface Editor – Images are important for any computer program and the ability to include images in the software environment to provide an easy to use interface is what makes or breaks a computer software. PIDE is an excellent platform that is not only easy to use but also allows its users to create interactive programs with the use of images as well as sounds. The PImageList Object is used in PIDE to contain a list of images or surface images that can be used in an application. Just by including images in an ImageList, users can easily incorporate images for buttons and other elements of an application.

Figure 11: Surface property editor

With surface editor, users can very easily create large images by combining multiple bitmap
End-User Manual—Version 2.0 Page 22 of 186

images. Very useable in creating sprite animations, surface editor includes various buttons for imparting complete control over the images. Buttons used in the surface editor are:
New image list

Open new image list
Save current image list
Copy item
Paste item
Add image
Delete image
Center image

Crop image
Stretch image
Split image
 Change color mask button.

Font Property Editor – Used for imparting a specific font to an object, the font selector is an excellent tool that allows a user to visually select the different parameters of the font of an object. Users can gain easy access to the Font selector property by double clicking the font property.

End-User Manual—Version 2.0 Page 23 of 186

Figure 12: Font property editorThe Font selector or font editor window consists of various selections that can lead to many text transformations. While the Font section can be used to select the font, Font style is used to select the appearance of the font. The Size and Effects section determine the emphasis on a text and the Color section determines the color of a text. Using the various scripts in the Script
section, users can select the outlook of their text. The sample section gives a preview of the text that is selected. After selecting the required font setup, click the OK button to accept the changes.
Range Selector – The range selector in PIDE2 allows a user to select the range instead of specifying a number. Used for specifying the range of a property, the range selector is an interesting tool that would allow a user to select the level of tint not by inputting the value but by selecting the appropriate level by scrolling the scroll button in the range selector.

End-User Manual—Version 2.0 Page 24 of 186

Game Level Editor – The game level editor is a simple to use yet very advanced utility of PIDE2. Allowing users to create games with no or minimum coding, the game designer in PIDE2 assists its users in creating games without any hassles just by dragging and dropping objects in the game form. Selecting a Desktop Game project in the New Project Window is the first step users will have to take for creating games in PIDE2. The default Project Manager Window of
Desktop Game already consists of most of the objects that are required by a user but other objects will also need to be added. Some of the objects that are required in the Project Manager for creating a game are listed in the Components Pane under the Swril category, these are:

• PGameForm – The PGameForm class inherits its characteristics from the PForm class and is used to hold the contents of a game. PGameForm Properties:
Property DescriptionName This property specifies the name if the game form.ClassName This property lists the name of class this object belongs to.Align Used for aligning the object .Anchors Used to align an anchor in the desired location.BorderIcons Specifies the icons on the border i.e. close, minimize and maximize .BorderStyle Lists the border style followed by the PGameForm window.Caption Lists the Title of the PGameForm window.Color Sets the background color of PGameForm window.Enabled Specifies whether the object is enabled or not.Font Sets the font and the related properties of PGameForm.ShowCursor Decides whether to show cursor or not.Visible Specifies whether MyGameForm is visible or not.FPSSpeed Specifies the frame per second.Speed Specifies the number of game loops to process per second.TabStop Allows a user to switch windows while keeping stopping the

End-User Manual—Version 2.0 Page 25 of 186

execution of the game.Binds Specifies the object binding options. Double clicking this property opens the object binding property editor.CycleMode Allows a user to change the way a loop is processed in a game.DrawMode Allows a user to specify how a screen is updated at each game loop.FullScreen Whether game will display in full screen mode or not.GameHeight The height of the game window.Gamewidth The width of the game window.InfoColor Color of informationIsometricDisplay Switch on the isometric display or not.Orientation Specifies whether the orientation of the screen.OriginsX This option specifies the start X coordinate of the game engine.OriginsY This option specifies the start Y coordinate of the game engine.ShowInfo Whether to show information or not.UpdateMode The mode to update the game display.InputOrientation This property specifies how the input methods will be oriented.CurrentMap Determines the current map that this game form belongs to.MainMap Specifies the main map of on which current game form will depend on.MainFriction This is a property that imitates the physics and determines the friction that needs to be applied to a PPhysicsSprite object.MainGravity This is a property that imitates the physics and determines the gravity that needs to be applied to a PPhysicsSprite object.
End-User Manual—Version 2.0 Page 26 of 186

Height This property determines the height position of the game form.Left This property determines the left position of the game form.Position Determines the position of the game form relative to the screen.Top This property determines the top position of the game form.Width This property determines the width of the game form.AutoHideScrollBars This property specifies whether to automatically hide scroll bars or not.HScrollBar Whether to display horizontal scroll bar or not.ScrollIncrement This property specifies the scroll increment by which the form is scrolled.VScrollBar Whether to display vertical scroll bar or not.
• PGMap – PGMap is a class that inherits the PObject class and represents the main screen of the game.PGMap Properties:

Property DescriptionBackMusic This property determines the music to be played in the game background.BackSurface This property determines the image at the background of the game map.Color This property specifies the color of game map.Binds This property specifies the object binding properties.
• PMusic – The PMusic class is used to apply music to the game.PMusic Properties:

End-User Manual—Version 2.0 Page 27 of 186

Property DescriptionFilename This property specifies the filename of the music file.PackageFile Use this property specifies the package file that contains the music file.Resource This property specifies the resource that is used in the project.Frequency Use this property to specify the frequency of sound the music will play at.Loop Thy is used to specify whether the music should loop continuously or not.Pan The pan property can be used to increase or decrease the panning effect on the sound.Volume Use the volume property to set increase or decrease the default volume.
• PSprite – Psprite represents an object on the game map and is used to perform actions in the game.PSprite Properties:

Property DescriptionAltAlpha This property is used to specify the alternate alpha settings.AltIndex This property is used to specify the alternate index.AltRadius This property is used to specify the alternate radius.AnimLoopCount Set this property for specifying the animation loop counts.AnimSpeed Set this property for specifying the animation speed.AnimSpeedVel This property can be used to set the animation speed based on the velocity of the sprite.FirstIndex Used to specify the first index of the animation.HideWhenAnimDone Used to specify whether to hide the animation when it is finished.
End-User Manual—Version 2.0 Page 28 of 186

LastIndex Used to determine the last index of the animation.Alpha This property can be used to provide the alpha settings.Angle Used to specify the angle of appearance of the sprite.Color Use this property to set the color of the sprite.GreyScale Specify whether sprite should be displayed in grayscale or not.IsoTile Use this option to set whether this sprite is tiled using isometric positioning or not.MirrorX Use this option to set if the sprite has is mirrored at X axis.MirrorY Use this option to set if the sprite has is mirrored at Y axis.Negative Use this option to set the negative of this sprite.Parent Used to specify the parent of the sprite object.ParentClip Specifies whether this sprite has a parent clip or notTint Sets the tint of the spriteTintLevel Used to set the tint level of the spriteTransparent Used to specify if this sprite will transparent or notVisible Used to make this sprite visible or invisibleCycleSpeed This property can be used to set the loop speedLifeTime This property is used to set the life time of a spritePaused Use this property for setting whether the sprite will start paused or not.Platform This property determines if the sprite uses a platform or not.ProcessOnlyInView For processing the sprite only in view, use this option.AccurateCheck Makes sure the sprite does not collide with other objects.BorderCheck This property checks if the sprite collides with the screen borders.BottomCollision Check to see if the collision happens at the bottom of the
End-User Manual—Version 2.0 Page 29 of 186

sprite.CallCollide Use this property on two sprites to call the OnCollide propertyCancelVelX Property to cancel the velocity X of a sprite in case of a collision.CancelVelY Property to cancel the velocity Y of a sprite in case of a collision.CheckCollide Check if collision happened or not.CollideBottom Set property to trigger a collide event if collision occurs to the bottom of sprite.CollideLeft Set property to trigger a collide event if collision occurs to the left of sprite.CollideRight Set property to trigger a collide event if collision occurs to the right of sprite.CollideTop Set property to trigger a collide event if collision occurs to the top of sprite.CollideWith Use this property to specify the other sprites to collide with.Id Used to set the ID of a sprite.LeftCollision Used to check the occurrence of collision to the left of a sprite.OvalShape Used to set the shape of collision objects.PixelCheck Use this property to perform pixel check.RightCollision Used to check the occurrence of collision to the right of a sprite.TopCollision Used to check the occurrence of collision to the top of a sprite.AccelerationX This property can be used to set the acceleration of a sprite in x axis.AccelerationY This property can be used to set the acceleration of a sprite in y axis.
End-User Manual—Version 2.0 Page 30 of 186

Velocity Used to set the velocity of a sprite movement.VelocityLimitHigh Use this property to set the upper limit of the velocityVelocityLimitLow Use this property to set the lower limit of the velocity.VelocityX Set the velocity at the X axis for the sprite.VelocityY Set the velocity at the Y axis for the sprite.IsoHeight Set the isometric height.Light Use this property to set the intensity of light on the sprite.LightRadius Use this property to set the light radius on the sprite.AutoOffSetX This property allows a user to automatically set the OffSet of X axis for the spriteAutoOffsetY This property allows a user to automatically set the OffSet of Y axis for the spriteOffsetX This property allows a user to set the OffSet of X axis for the spriteOffsetY This property allows a user to set the OffSet of X axis for the spriteAutoScrollX Use this property to set auto scroll options for the X axisAutoScrollY Use this property to set auto scroll options for the Y axisFixedX Check to set a fixed scroll X positionFixedY Check to set a fixed Y positionHeight Set the height of the sprite Left Position the left side of the spriteTop Position the top side of the spriteWidth Set the width of the spriteZOrder Use this property to set the ZOrder of the spriteAlphaSurface Set the alpha settings for the surface of the sprite.Index Set the index for sprite.
End-User Manual—Version 2.0 Page 31 of 186

Surface This property specifies the surface object, this sprite will call its bitmap from.TileX Use this property to set the tiling for X axis.TileY Use this property to set the tiling for Y axis.
• PPhysicsSprite – The PPhysicsSprite class is the same as PSprite class but adds the physics properties to it.PPhysicsSprite Properties:

Property DescriptionBounce Check to set the bounce in the sprite. Elasticity Set the elasticity option for the sprite.Friction Set the amount of friction applied on the sprite.Gravity Set the gravity settings of the sprite.Mass Set the mass of a sprite object.NoFriction Check if the sprite will display friction or not.
• PSound – The PSound class inherits the properties of PSoundCollection class and is used to apply small sounds to the game.

• PSoundEngine – This class inherits the PObject class and specifies the sound settings in the game.PSoundEngine Properties:
Property DescriptionBitsPerSecond This property is used to tweak the Bite per second setting of the sound.Stereo This property is used to determine if the sound played is stereo or mono.

End-User Manual—Version 2.0 Page 32 of 186

• PSurface – The PSurface class inherits the PCollectionItem class and is used to set the surface property of a game map.PSurface Properties:
Property DescriptionColorMask This property specifies the color mask on the surface.Filename Used to specify the filename of the source.FrameCount This property determines the frame count of the surface object.

• PWorldSprite – The PWorldSprite class inherits the properties of the PSprite class and is used to provide faster drawing by sacrificing special effects that are made possible with PSprite and PPhysicsSprite opjects.Given below is an example that would show you how to create a simple game without much of a coding:
• Open PIDE and create a new Desktop Game project.

End-User Manual—Version 2.0 Page 33 of 186

Figure 13: Create new desktop game

• Now, in the Project manager view of Desktop Game project, drag a PSurface
Object to the Surfaces folder.

End-User Manual—Version 2.0 Page 34 of 186

Figure 14: Drag PSurface to project manager

• Double click the PSurface editor to open Surface Editor and choose an image to be included in the bitmap. Close the Surface editor to proceed.

Figure 15: Open an image

End-User Manual—Version 2.0 Page 35 of 186

• Double click the PGameMap Object and then double click on the PSprite class in the components pane under Swril category to include a Sprite object in the
PGameMap.

Figure 16: Double click GameMap

Figure 17: Drag PSprite to GameMap

• Go to the Properties pane and select the Surface you have included in your project in the Surface Property. This should make your Sprite Object have a background from the Surface bitmap. Now close the GameMap Tab to go back to the Project
Manager.

End-User Manual—Version 2.0 Page 36 of 186

Figure 18: Change Surface property of PSprite

• Right click MyGameForm and select OnMouseMove event from the events context menu to create an event when a mouse moves.

End-User Manual—Version 2.0 Page 37 of 186

Figure 19: Create a move event on GameForm

• Drag the PSprite Object from your project to the OnMouseMove event created by you. This would enable an auto insert box to let you choose a method. Write Move and choose the Move Method.

End-User Manual—Version 2.0 Page 38 of 186

Figure 20: Drag PSprite to mouse move event

• Click the newly created Move method and change its Parameters to X$ and Y$ variables. Also set the Relative property to false.

End-User Manual—Version 2.0 Page 39 of 186

Figure 21: Set X and Y parameters of Move method

• Run the project to see the Sprite object following the mouse wherever it goes.

End-User Manual—Version 2.0 Page 40 of 186

Code Navigator

Figure 22: Code navigatorThe code navigator is available in the Work Area by clicking on the Toggle Navigator project action button. The code navigator allows you to quickly interact with the three primary components of your code:
End-User Manual—Version 2.0 Page 41 of 186

• Class,
• Procedures, and
• Variables.

Debugging Console

Figure 23: Debugging ConsoleThe debugging console, located at the bottom of the interface, provides run-time analysis of code and project objects during execution. The debugging console of PIDE2 consists of five debugging tools to help a programmer debug his/her program while in execution. These tools are:
• Local Variables – Used to view the execution of variables declared local in the code.

Figure 24: Debug Local variables

• Global Variables – Used to View the execution of variables declared global in the code.

Figure 25: Debug Global Variables

• Watch List – Used to display the status of variables or expressions (during execution) that are selected by a user.
End-User Manual—Version 2.0 Page 42 of 186

Figure 26: Debug Watch List

• Call Stack – Lists the functions or procedures in reverse order of their call.

Figure 27: Debug Call Stack

• Stack – Lists all the variables or expressions that are in the stack.

Figure 28: Debug Stack

End-User Manual—Version 2.0 Page 43 of 186

Tips on PIDETips are used to provide a user with quick and efficient access to various functions of software. PIDE also uses a bunch of tips to allow its users to perform efficiently without any hassle.By default, PIDE will show helpful tips at the startup of the application. These tips can be read by pressing the Next Tip button or closed by using the Close button. Users can also configure whether they want to see tips at the startup or not by using the show tips at
startup drop down menu and selecting always or never option.

While in between the execution of the application, users can access tips by going to the Help menu and selection Tips.

End-User Manual—Version 2.0 Page 44 of 186

End-User Manual—Version 2.0 Page 45 of 186

Creating and Managing ProjectsProjects created within PIDE are a combination of multiple files:
• Project file (.prj)—this file is an XML file that defines project parameters
• Code file (.ppl)—this is the .ppl code file that represents the project and all the programming objects within
• Help (.hlp)—this is a help file created to support the compiled application

Creating a New ProjectCreating a new project can be carried out in a number of ways:
• Select the New Option from the File Menu, or
• Click on the Create a New Project… Link from the Welcome Screen.
• Both of these options will open the Select New Project Type Window.

Figure 29: New Project WindowTo create a new project through the Select New Project Type Window, simply select the type of project you want to create and click the Ok Button. Types include:
• Code File,

End-User Manual—Version 2.0 Page 46 of 186

• Component Project,
• Console,
• Database,
• Database Project,
• Desktop Form,
• Desktop Game,
• Empty Project,
• Find Wizard,
• Help File,
• Menu Bar,
• Mobile Form,
• Mobile Game,
• Mobile VGA Game,
• Package,
• PPL Class,
• Procedural Project,
• Report,
• Shell,
• SoundEngine,
• Visual Component Project.

Opening a File into the Work AreaTo open a file into the work area,
• Select the Open Option from the File Menu, or
• Click on the Open File Button,

• Both of these options will open the File Dialog Window.
End-User Manual—Version 2.0 Page 47 of 186

Figure 30: Opening a fileUse the File Dialog Window to find the project file you wish to open. Supported file types include:
• .ppl,
• .xml,
• .prj,
• .hlp,
• .bmp,
• .plg,
• .smd,
• .eed and
• .ctp

End-User Manual—Version 2.0 Page 48 of 186

When you have found the file you wish to open, click the Open Button to open it into the work area.
Saving a ProjectFor saving the progress on a project, users have 4 options namely,

• Save
• Save as...
• Save Project
• Save Project As…If you want to save the project as is, you can press the Save button from the File Menu. For saving the whole project you can use the Save Project or the Save Project as… option.

Figure 31: Saving a fileTo save the current progress on a project,
• Select the Save as… Option from the File Menu,
• Write a File name for your file,
• Click the Save Button.

Note: you can select the Save As option from the File Menu to create a copy of the project. This
will open the File Dialog Window and provide you the opportunity to create a new name for
the project.

End-User Manual—Version 2.0 Page 49 of 186

Close an Open ProjectTo close the current project,
• Right-click the name of the project above the Project Action Buttons and select the

Close or Close All Option from the context-sensitive menu.

Figure 32: Closing a file

Note: if you have made changes, PIDE will prompt you to save the changes before closing the
project.

• Click the Save Button.

End-User Manual—Version 2.0 Page 50 of 186

Working with CodeAs an integrated design environment, PIDE includes both design-time features (i.e., adding objects to your project and having the code automatically generated) as well as the opportunity to work directly with the code. Users can also work with the console environment to create programs.
About the Pocket Programming Language (PPL)PPL is now a fully object-oriented programming environment but the old procedural programming is still supported. Most of the PIDE 2 file (projects, help, components definition, and preferences) are XML based. The PPL source code is a text file. The language syntax is a mix of C, Basic and Pascal.
Accessing the Code ViewTo access the Code view for a project (opening the .ppl file),

• Click on the PPL Icon in the Project Action Buttons, or
• If the code file is already open, click its name above the Action Buttons.
• Both these options will open the current project .ppl file into the work area.

Figure 33: Code viewThe Code View within PIDE is similar to other IDEs and provides a complete nested, organized view of the project code. Through the Code View, you can carry out a number of actions available from the Project Action Buttons on the top or the Components Navigator to the left. These actions include:
• Commenting code,
• Formatting code,
• Adding objects,
• Collapsing/expanding code,
• Adding color to code,

End-User Manual—Version 2.0 Page 51 of 186

• Adding characters,
• Creating notes, and
• Viewing definitions.

Commenting codeThere may be times when you need to quickly comment a block of code. This can be carried out simply through the Action Buttons.
Figure 34: Commenting codeTo comment code,

• Select it from the Code View by highlighting it
• Click the Comment Selected Code Button. This will automatically comment all of the selected code.

Formatting CodeKeeping code properly formatted is critical for a neat, organized project. This will, in turn, make it easier to find code and functionality later.

Figure 35:Before Formatting

End-User Manual—Version 2.0 Page 52 of 186

Figure 36: After formattingTo format all the code in the .ppl file,
• Click the Format Code Button from the Action Buttons.

Adding ObjectsApplication objects (i.e., returns, classes, etc.) can be easily added to the code by dragging them from the Component Panel to the left of the work area.

End-User Manual—Version 2.0 Page 53 of 186

Figure 37: Adding objectsThe Component Panel provides a number of objects that can be added to the code. These include:
• Application,
• Class,
• Code Flow,
• File,
• Standard Control,
• Forms,
• Menus,
• PPLs,
• Database,

End-User Manual—Version 2.0 Page 54 of 186

• Swirl, and
• Project Classes

Note: See Appendix A for a definition of the available application objects.

Note: you can also install and uninstall components from the panel. For more information
about the Component Panel, see the appropriate section in this manual.

 Figure 38: Components tab open Figure 39: Components tab collapsed

End-User Manual—Version 2.0 Page 55 of 186

To add an application object to the code,
• Click on the item you wish to add from the Component Panel and drag it to the appropriate location within your code. This will automatically add the appropriate code to reflect the application object.

Collapsing/Expanding NodesTo collapse or expand a node in your code view (making it easier to manage),
• Place the cursor in the code you wish to collapse or expand, and
• Click the Collapse/Expand Button in the Action Buttons.

Adding Color to CodeYou made need, at times, to add a RGB color reference in your code.

Figure 40: Adding color

To add a RGB color to your code,
• Insert the cursor at the point in the code where you wish to add the RGB color and click the Insert RGB Color Button. This will open the Color Selector Window.

End-User Manual—Version 2.0 Page 56 of 186

Figure 41: Color Selector Window

• Click on a color to insert and click the Ok Button.

End-User Manual—Version 2.0 Page 57 of 186

Figure 42: Inserted Hexidecimal Color

• The RGB color selected in the Color Selection Window will appear at the point in the code where you clicked the color button as three numerical values:
o Red,
o Green, and
o Blue.

Adding CharactersYou can add special characters into your code and point of the cursor. To add special characters,
• Place the mouse cursor in your code at the point where you want to add the characters
• Select the Characters Option from the Edit Menu. This will display the special characters selection pop-up at your mouse cursor.

End-User Manual—Version 2.0 Page 58 of 186

Figure 43: Insert Special Characters

• To insert, simply click on the desired character.
Creating NotesNotes are a great way to add code level-comments.To add a note,

• Put the cursor at the point in the code where you wish to add the note
• Click the Note Button from the Action Buttons. This will open the Edit… Window.

End-User Manual—Version 2.0 Page 59 of 186

Figure 44: Adding notesThe Note Editor allows you to create text-based notes for your code.
Note: each note you create will be visible from the Visual Designer interface. The note is also
assigned to a specific line in the code.

End-User Manual—Version 2.0 Page 60 of 186

Figure 45: Textual noteTo write a text note,
• Click the Text Button. This will allow you to compose a textual note. Note: this is the

default note format so if you wish to compose a textual note when first clicking the
Note Button, you do not need to click the Text button.

Edit a NoteTo edit a note,
• Double click on the note you wish to edit, or
• Select the note by clicking on it and then click on the … Button of the Note Field in the Properties Panel.
• Both of these options will open the note for editing.

Procedure ListWhile project manager makes it very easy to locate an object, code editor is not that useful in finding something. In the code view, users can use the Procedure list to find and locate functions as well as procedures form with a code. Especially useful for people who work with thousands of lines of code, Procedure list can be used by pressing the Ctrl + G key in
End-User Manual—Version 2.0 Page 61 of 186

the code view.

Figure 46: Procedure list

ComponentsThere may be times when you add components that refer to external .ppl files (i.e., the game engine uses swirl.ppl). In this event, the associated .ppl file will be included at the top of the project .ppl file using an include statement.For more information about the Component Library, see the appropriate chapter in this manual.
Navigating CodeThrough the Code View, you can also quickly access categories of elements through the Code Navigator:

• Classes,
• Procedures, and
• Variables.To open the code navigator,

End-User Manual—Version 2.0 Page 62 of 186

• Click on the Toggle Navigator Button from the Action Buttons. This will display the Code Navigator.

Figure 47: Code navigatorTo see your project elements within a specific category of code, double click on the category name. This will expand the category to display the elements of your project that fall within that category. You can then double-click on the element to jump to that specific point within the source code of your project.

End-User Manual—Version 2.0 Page 63 of 186

The Design EnvironmentPIDE includes a comprehensive and powerful visual designer, allowing you to create robust applications (including games) by dragging & dropping components as well as specifying component behavior through properties and events.The visual designer is opened by default when you open a project and provides you with a variety of tools by which to easily create your application:
• Drag and Drop Components,
• Application Object Properties and Events,
• Layout,
• Auto Create, and
• Object editing

Drag and Drop ComponentsPerhaps the most powerful feature of the visual designer is dragging and dropping components from the Component Library into the application flow. Whether fully-encompassed objects (such as a form or menu) or application logic (such as a return or a while loop), you can easily and quickly add functionality to your application with little to no coding.The Component Panel includes the following objects you can add:
• Application,
• Class,
• Code Flow,
• File,
• Standard Control,
• Forms,
• Menus,
• PPLs,
• Database,
• Swirl, and

End-User Manual—Version 2.0 Page 64 of 186

• Project Classes
Note: See Appendix A for a definition of the available application objects.

Note: you can also install and uninstall components from the panel. For more information
about the Component Panel, see the appropriate section in this manual.To add an application object to the visual designer,

• Click on the item you wish to add from the Component Panel and drag it to the appropriate location within your application flow. This will automatically add the respective item in the visual editor.
• All you need to do is to set the various property and events values, you will be able to perform many functions with the help of events, methods and classes.

Note: you cannot drag an application to any spot. You can only place objects appropriately
within your flow.Once an object has been added to the application flow, you can carry out additional actions by clicking on the appropriate Action Button:

• Auto Create,
• Sub-Class,
• Expand Class,
• Edit, and
• Edit code.

Auto CreatePIDE can auto-create code for elements that are added to the flow. There may be times when you don’t want the code for a component generated automatically. To turn on or off this feature,
• Select the application object for which you wish to change the auto create setting.
• Click the Auto Create Button from the Action Buttons. This will either turn the auto code generation for the selected object off or on and will be indicated by either a solid or transparent green check.

Sub-ClassThis creates a sub class that is added to the palette so that you can re-use it by dragging it into the visual editor
End-User Manual—Version 2.0 Page 65 of 186

Expand ClassExpand on a base class by adding code. All instances of the class used throughout your project will be automatically updated with the additions. Furthermore, adding the expanded class will include your additions.
EditSome objects have visual components that can be edited in the visual layout tool. To edit an object,

• Select the object (i.e., a form)
• Click the Edit Button from the Action Buttons. This will open the object into the visual layout tool.

Note: for more information about the visual layout tool, see the Layout Section of this manual.

Edit CodeTo edit the code for an application object,
• Select the object (i.e., a form)
• Click the Edit Code Button from the Action Buttons. This will open the object into the code view.

Note: for more information about editing code, see the Code View section of this manual.

Application Object Properties and EventsEach object that you add to your application from the Component Library has properties that can be specified through the Properties Pane. In addition, some objects have events (i.e., onclick) that can be specified through the Events Panel.

End-User Manual—Version 2.0 Page 66 of 186

Properties Panel

Figure 48: Properties panelThe Properties Panel allows you to specify properties of an application or project object.To specify an object’s properties,
• Select the object in the application flow.
• This will automatically populate properties pane with the object’s current properties.

End-User Manual—Version 2.0 Page 67 of 186

Figure 49: Selecting PropertiesEach object can have a variety of properties categorized into one of several categories depending upon the type of object:
• Alignments—applicable to objects with layout properties such as forms
• Appearance—applicable to objects with layout properties such as forms
• Behavior
• Link
• Position—applicable to objects with layout properties such as forms

End-User Manual—Version 2.0 Page 68 of 186

• Input—applicable to objects that have graphical interfaces (i.e., the game engine)
• Parameters, and
• Status.To set the properties for a specific item in a category,
• Click on the Value field of the property you wish to set and specify a value (or select it)

Note: you can use the drop-down menu at the top of the Properties Pane to jump to other
application objects associated with the object that you initially selected.

Events Panel

Figure 50: Events panelIn addition to properties, some objects (like menus and buttons) have events that you can specify.
End-User Manual—Version 2.0 Page 69 of 186

To specify an object’s events,
• Select the object in the application flow.
• This will automatically populate properties pane with the object’s current properties.
• Click the Events Tab.

Figure 51: selecting eventsPIDE includes a number of default events that you can specify including:
• OnAnimDone,
• OnCollide
• OnClick,

End-User Manual—Version 2.0 Page 70 of 186

• OnCreate,
• OnDestroy,
• OnMouseDown,
• OnMouseMove,
• OnMove,
• OnPaint,
• OnResize,
• OnScroll,
• OnShow, and
• OnTimerTo set the value for a specific event,
• Click on the Value field of the event you wish to set and select the application object that will be called upon that event’s instantiation, or
• Double-click on the event you wish to add. If an event already exists of that type, it will jump to that portion of your code where the event is located; otherwise, it will create a new event.

Note: if you are in the visual editing mode and add an event, it will create the event in the
visual framework.

LayoutPIDE also includes a visual layout tool to design the interface-components of application objects such as forms.To open the visual layout tool,
• Double click on an application object in the visual design environment (i.e., a form). This will open the visual layout tool.

End-User Manual—Version 2.0 Page 71 of 186

Figure 52: Visual EditorThrough the visual layout tool, you can add a variety of controls (with associated events) to an application object such as a form. When you are in the visual layout tool, an additional component library category becomes available, Standard Controls, that include:
• PControl,
• PButton,
• PTimer,
• PEdit,
• PMemo,
• PGroupBox,
• PLabel,
• PListBox,
• PComboBox, and

End-User Manual—Version 2.0 Page 72 of 186

• PGridThrough the visual layout tool, you can:
• Add Elements,
• Position Elements,
• Edit Control Code, and
• Edit Events and Properties.

Add ElementsTo add an element to the visual layout tool,
• Double click on the control you wish to add to the work area.

Figure 53: Elements Placed in the Visual EditorOnce the control has been placed, you can drag it around the layout editor to position it where you wish.
End-User Manual—Version 2.0 Page 73 of 186

Position ElementsOnce the control has been placed, you can carry out additional actions to place and arrange the control by first select the control and then clicking the appropriate Action Button:

Figure 54: Visual Editor Placement Tools

• Bring control to front—bring the control to the topmost layer
• Send control to back—send the control the bottom most layer
• Align—you can align one or more controls at the same time by selecting them and clicking the appropriate Action Button:

o Left,
o Right,
o Top, and
o Bottom.

• Placement—you can click and drag the control to any part of the visible area

End-User Manual—Version 2.0 Page 74 of 186

Edit Control Code

Figure 55: Selected Control in Visual Editor with Properties OpenYou can edit the control of a selected code by clicking on the Edit Code Button from the Action Buttons or by double-clicking on the control.
Non Visual ElementsIn many instances, application objects that have visual components (which can be edited using the visual layout tool) will also have non-visual components. You can see these components by clicking the Non Visual Components Button from the Action Buttons. This will open the Non Visual Components panel.

End-User Manual—Version 2.0 Page 75 of 186

Figure 56: Non-Visual Elements in Visual EditorThrough the Non Visual Components panel, you can:
• Move a component up or down—select on the component you wish to move and click the Up Arrow or Down Arrow.

Events and PropertiesYou can edit the events and properties of a control by selecting it and modifying the values in the Properties panel.

End-User Manual—Version 2.0 Page 76 of 186

Creating An EventThere are many ways by which you can create an event in PIDE. Given below are the steps by which you can create an event in PIDE:
• Method 1:1. Create a project and use the Project Manager view

Figure 57: Creating New Project2. Click on an Object and view the events panel

End-User Manual—Version 2.0 Page 77 of 186

Figure 58: Events Panel3. Double click the object event name in Events Panel to create an event

Figure 59: Creating an event

• Method 2:1. In the project manager, double click on an object to create a default event

End-User Manual—Version 2.0 Page 78 of 186

Figure 60: Creating Default Event

• Method 3:1. Right click on the object and select Events from the context menu. 2. Within Events, select the appropriate events to attach to an object.

Figure 61: Selecting Events

End-User Manual—Version 2.0 Page 79 of 186

Adding Objects within EventsAfter creating an event with any of the methods specified above, you can add objects within events with ease. Follow the steps given below to add objects and methods in the event.
• After creating an event, drag an object to the event in the Project Manager.

Figure 62: Drag to the event

• After adding an object to the event, you will be able choose methods that will apply to an object from the menu that appears.

End-User Manual—Version 2.0 Page 80 of 186

Figure 63: Choose a method

• If you have chosen a property, you will be able to set its value from expr Property field.

End-User Manual—Version 2.0 Page 81 of 186

Figure 64: Using exper property

Note: Instead of searching for a new objet in the components panel, users can also use the
Alt+Drag feature of PIDE to create an object belonging to the same class of the object from
where it was dragged.

End-User Manual—Version 2.0 Page 82 of 186

Testing ProjectsAs a robust development environment, PIDE includes a host of features to enable run-time debugging and testing. The PIDE testing features are categorized as follows:
• Design-time testing,
• Run-time testing,
• Profiling,
• Watches, and
• Test/Debug Console.

Design-Time TestingThe PIDE design-time testing features include processes and actions that can be taken as you develop your application. These include:
• Breakpoints, and
• Code stepping

BreakpointsWhen viewing the source code for your project, you can easily set breakpoints where your code will stop upon executing. This is especially useful if you are testing to see outputs of actions (i.e., clicking a button) or data capture.To set a breakpoint,
• First, open the source code of the project component by right-clicking and selecting the View Source Code option from the context-sensitive menu.

End-User Manual—Version 2.0 Page 83 of 186

Figure 65: Viewing the source codeWhen your source code is displayed, you can set a breakpoint by
• clicking to the left of the line for which you wish to add a break, or
• selecting the Toggle Breakpoint Option from the Run Menu.
• Both methods will add a red dot (to the left of the line number you selected) indicating a breakpoint is now present on that line.You can also manage all of your breakpoints (throughout the project) by…
• selecting the Breakpoints… Option from the Run men or
• pressing CTRL+B
• Both of these options will open the Breakpoints window.

End-User Manual—Version 2.0 Page 84 of 186

Figure 66: break point windowThe Breakpoints window makes it easy to manage your breakpoints across the entire project. Through the Breakpoints window, you can
• Delete individual breakpoints by selecting them and clicking the Delete Breakpoint

Button or
• Delete all breakpoints by clicking the Delete All Breakpoints Button.

Note: when running your code with breakpoints, output will appear in the Debug Console at
the bottom of the PIDE interface. For more information about this console, see the
appropriate section in this chapter.

Code SteppingCode stepping is a feature that allows you to move line-by-line through your code in debugging mode, capturing valuable information about each line in the Debug Console.PIDE provides three types of code stepping:
• Step to next line—step the running application to the next line (skipping any sub lines). Note: if the next line calls a specific function, that function will be called in its

End-User Manual—Version 2.0 Page 85 of 186

entirety. This is good if you already know the function works.

• Step to next line within procedure or function—step the running application to the next line within a procedure or function (allowing you to test sub-lines). Note: this is
good to test individual functions and their output.

• Run to current line—this runs the entire application up to the currently selected line.
Note: this is great to test if a specific line is receiving information from previous
lines/functions.

Note: when you utilize code-stepping, you automatically put PIDE into a debugging state,
represented by the Stop Button in the main toolbar. To exit the debugging environment, click
the Stop Button.

Note: all debugging information during code stepping will appear in the Debug Console. For
more information about the Debug Console, see the appropriate section in this chapter.

Run-time TestingRun-time testing allows you to see application-level output during run-time (as if the application were actually running on the user’s device).To enable run-time testing,
• Click the Run Button or
• Select the Run Option from the Run Menu.
• Both of these options will put your application into a run-time simulation, capturing all run-time problems in the Debug Console.

Note: you can also prevent run-time checks from happening (i.e., if you have a known problem
that does not impact functionality and want to work with other parts of the application’s run-
time experience) by clicking the Run Without Run-Time Check Button or selecting the
Dedicated Run Option from the Run Menu.

End-User Manual—Version 2.0 Page 86 of 186

Profiling

Figure 67: Profile ReportProfiling allows you to get detailed information about the performance of your application. Vectors that PIDE tracks during debugging include:
• Application memory consumption,
• Time spent processing each line of code,
• Time spent processing each procedure, and
• CPU utilization for each line of code and procedure. To run a profile, select the Profile Option from the Run Menu.

WatchesWatches allows you to see variable assignment at run-time. This is a great way to double-check that your variables are populated with expected value and data as your application executes.
End-User Manual—Version 2.0 Page 87 of 186

Debug Console

Figure 68:Debug tabThe Debug Console is a powerful feature within PIDE that captures design-time testing and run-time testing debugging information. The console is divided into four tabs:
• Debug,
• Errors,
• Warnings, and
• Compiler Messages

Debug Tab

Figure 69: Debug tabThe debug tab provides output information as the application runs. To access the Debug portion of the Debug Console, click on the Debug Tab.
Errors Tab

Figure 70:Errors tabThe errors tab provides specific errors in the application that prevent it from running. To access the Errors portion of the Debug Console, click on the Errors Tab.
Note: To jump to the code that caused the error, simply double-click on the error message.
This will open the source code window of the appropriate component.

End-User Manual—Version 2.0 Page 88 of 186

Warnings Tab

Figure 71: Warnings tabThe warnings tab provides information about application behavior during execution that won’t cause the application to fail but may cause long-term issues (i.e., memory leakage, data formatting, etc.) To access the Warnings portion of the Debug Console, click on the
Warnings Tab.
Note: To jump to the code that caused the warning, simply double-click on the warning
message. This will open the source code window of the appropriate component.

Compiler Messages Tab

Figure 72: Compiler tabThe compiler messages tab provides information about messages generated during the compilation of the application. To access the Compiler Messages portion of the Debug Console, click on the Compiler Messages Tab.
Note: This also includes success messages

End-User Manual—Version 2.0 Page 89 of 186

Component LibraryIn an effort to enable developers to more quickly create and launch their applications, PIDE includes a robust component library that allows for rapid software development.

Figure 73: Components tabThe Component Library is the left-hand panel of the interface and is divided into the following categories:
• Class,
• PPL,
• Application,
• Forms,

End-User Manual—Version 2.0 Page 90 of 186

• Files,
• Database,
• File,
• Standard Controls,
• Menus,
• Swirl,
• Codeflow,
• Project Classes, and
• Unknown.In addition to drag-and-drop capabilities, you can also access property information about each component. To access a component’s properties,
• Hover your mouse over the component in question. This will display the context-sensitive menu.

End-User Manual—Version 2.0 Page 91 of 186

Figure 74: Components tab hover feature

• Click on the Book Icon. This will open the Hint Window.

End-User Manual—Version 2.0 Page 92 of 186

Figure 75: Hint Window for Component PropertiesThe Hint Window displays the following information about the component:
• The class to which the component belongs
• Any inheritances
• The position of the component within the class hierarchy
• .ppl Code files associated with the component, and
• Related objectsThe information displayed in the Hint Window is often a link that leads to additional information (such as related objects). When links within the Hint Window are click, the additional information will be displayed.

End-User Manual—Version 2.0 Page 93 of 186

Figure 76: Hint Window with NavigationThe Hint Window includes navigational elements to help you move through the additional pages as you click on links. The illustration above shows the available back arrow as a link as been clicked from the previous screen in the Hint Window.
• To return to the previous information, click on the Back Button in the navigation bar
• To move forward to a page that you have visited, click on the Next Button in the navigation barFinally, you can open the actual code of a component by clicking on the .ppl link within the Hint Window. This will open the code within the code editor, allowing you to make changes to a component. Note: this is especially useful if you have added your own components to the

library.

End-User Manual—Version 2.0 Page 94 of 186

What is a Component?A component in the PIDE software is composed of two elements:
• One or more .ppl files (source code), and
• XML definitions file.These two elements are combined into a Component Package.

ClassPIDE comes installed, by default, with a number of components already available in the library. You can get more information on these components by hovering your mouse over the component and clicking on the book to open the component help pop-up window.
Adding Custom ComponentsThrough the Component Library, you can also your own components (or additional components released by other developers or ArianeSoft). To install a new component,

• Select the Install New Component(s) Option from the Components Menu. This will open the Choose a Component Window.

End-User Manual—Version 2.0 Page 95 of 186

Figure 77: installing a new componentThe Choose a Component Window allows you to select a component package (.zip) file from your hard drive. After you have located the file, click the Open Button to load the component into your library.
Managing the Component LibraryThere may be times when you want to remove components from your library. This is accomplished by uninstalling the component. To uninstall a component from your library,

• Select the Uninstall Component Option from the Components Menu. This will open the Selection Component Definition File to Uninstall… Window.

End-User Manual—Version 2.0 Page 96 of 186

Figure 78: Uninstalling components

• To uninstall a component, select the definition file of the component to remove and click the component. Note: to select more than one component to remove, press the
CTRL key while you are clicking components.Once you remove or add components, it’s a good idea to refresh the library. This is accomplished by selecting the Reload Components and Help File Option from the

Components Menu.
Creating Your Own ComponentsYou can also create your own components and provide them to other PIDE developers for inclusion in their library.To create a component, you must package the following:

• .ppl files (source codes),
• Help files, and
• XML definition files

XML Definition FilesPIDE includes a built-in function that will automatically generate a XML file from a .ppl file. To generate your XML definition file,
• Select the Create XML From PPL File… Option from the Components Window. This will open the Open a File Window.

End-User Manual—Version 2.0 Page 97 of 186

Figure 79: creating a xml from a .ppl fileThe Open a File Window allows you to search your hard drive for the .ppl file. Once you have identified it, click the Open Button. This will open the Save As Window through which you can specify a name and location for the .xml file.
Generate the Component PackageOnce you have the .xml file definition and the .ppl source code, you can generate a component package that can then be installed in other PIDE installations. To generate the package,

• Select the Create Component Package Option from the Components Menu. This will open the Select Component Definition File… Window.

End-User Manual—Version 2.0 Page 98 of 186

Figure 80: creating a new component packageThe Select Component Definition File Window allows you to locate the XML definition file associated with the .ppl source code.When you select the .xml definition file, the Select Help Definition File… Window will open allowing you to locate the help file for the component.When you select the help file, the Save Component Package Where… Window will open allowing you to locate a location to save the component package file.
Creating classes from current project in components panelCreating components is very important not only because it allows a programmer to create his/her own components, it is also useful because it allows a programmer to reuse that component as many times as he/she wants. If you are working on a project and want to create components from it so that you can use those same components in other projects, you can use the ‘Install components from current project’ button available in the
Components menu. In this section, we will learn about creating PIDE classes that can be used to deliver specific functions in a program. These classes would contain their own properties, methods, logic etc. The DbNavigator class example is the perfect example of a class that can be created with the help of PIDE programming and then used with other projects.The DbNavigator class uses a toolbar interface and allows a user to navigate through the fields of a table easily. Given below are the steps that would allow you to create a DbNavigator class in the components panel.

• Create a new Component Project in PIDE2 and delete the existing components class as we will be creating that on our own. Drag a PToolBar class to the project and rename it as DbNavigator to make it look like a different class.
End-User Manual—Version 2.0 Page 99 of 186

Figure 81: Drag a PToolBar

• The DbNavigator will work by going to the previous or the next data element and this requires a dataset to work with. For providing the dataset to our DbNavigator
Class, we will include a property by dragging and dropping a PProperty to the
DbNavigator Class.

End-User Manual—Version 2.0 Page 100 of 186

Figure 82: Drag PProperty to DbNavigator

• After dropping the PProperty, rename it as Dataset and set its Type Property to
Control.

Figure 83: Set the Type property

• After changing the Type property, select PDataSet in the ClassName Property.
End-User Manual—Version 2.0 Page 101 of 186

Figure 84: Set the ClassName property

• Because we want to create a navigator, we will also have to create some buttons for performing tasks. For having buttons in the DbNavigator, drag 4 PToolButton objects to the DbNavigator and name them First, Last, Prior and Next.

End-User Manual—Version 2.0 Page 102 of 186

Figure 85: Drag four PToolButton Objects

• After creating the buttons, create events for the buttons by double clicking on the buttons.

Figure 86: Double click the buttons to create events

End-User Manual—Version 2.0 Page 103 of 186

• Now drag the Dataset Property to the First button’s event, type ‘first’ and select the
first message in the context menu that appears. Similarly, drag Dataset Property to the events of other buttons and select the appropriate messages.

Figure 87: Select a message

End-User Manual—Version 2.0 Page 104 of 186

Figure 88: Select messages for all buttons

• The class component is almost complete. You can add images, sounds and other objects to the class to enhance its functionality and look. After you are completed with the DbNavigator, save the file with the desired name by pressing Ctrl+S or by using the Save As.. Option form the file menu.
• After you have saved the file, some changes have to be made in the DbNavigator

properties for it to become a Class Component. In the DbNavigator properties, check the AutoCreate Property, specify the category in which DbNavigator will be included in by writing it in the Category Property, write PForm in the ChildOf
Property to determine where this class will work on. After checking the HasOwner,
HasParent and Visual Property, save the file again. Users can also tweak other properties like the library Property and the Icon Property if they are using other options.

End-User Manual—Version 2.0 Page 105 of 186

Figure 89: The property panel

• After tweaking the properties of the class, go to the components menu and select
Install components from the current project. This will create a DbNavigator in the components Panel under the database column.

Figure 90: Components Panel

• To use the newly created DbNavigator Class, create a New Project and add a database along with the tables and fields to it.
• Drag the DbNavigator Class to the project manager and change the Dataset

Property of DbNavigator to the table in the database. This will provide the data available in the fields of the given table to the DbNavigator.
End-User Manual—Version 2.0 Page 106 of 186

Creating A SQLite Database In PIDE

Creating as well as manipulating SQLite database in PIDE is an easy task. Generating quick databases with PIDE is just a task of dragging and dropping the correct components from the component panel to the project manager. Given below are the guidelines that would help you in creating a SQLite database in PIDE.
• Create a New Project

Figure 91: Creating new project

• Select a project of your choice and open it in the Project Manager view
• Drag PDatabase Object from the Components Panel to the project manager

End-User Manual—Version 2.0 Page 107 of 186

Figure 92: Drag a database

• Drag a PTable Object to the newly created PDatabase Object

Figure 93: Drag a PTable

• Select the PDatabase Object and set its filename property to a location where you would like to store the database. Remember to save this file with a .db or .sdb
extension

End-User Manual—Version 2.0 Page 108 of 186

Figure 94: Specify a filename

• Now, in the TableName Property of PTable Object, give a name to your table

Figure 95: Give TableName

• Drag some PField Objects to the table object to add fields

End-User Manual—Version 2.0 Page 109 of 186

Figure 96: Add PField object

• Click all the PField Objects and change their FieldName, FieldSize and FieldType
Property according to your needs.

Figure 97: Specify Property

• In the data menu, Click on Create Database to create your database file in the location specified earlier.

End-User Manual—Version 2.0 Page 110 of 186

Figure 98: Creating Database

• Once you have created a database, you can double click the PTable Object to edit the field values.

Figure 99: Viewing Table

End-User Manual—Version 2.0 Page 111 of 186

• The database along with table has been created. Now you can use other objects like
PDBGrid to arrange the fields the way you want.

Figure 100: insert PDBGrid

• After creating a database, you can drag the PTable to a PForm. The drag operation will initialize the SmartMove feature which will ask you about the action that you would like to accomplish. Here, select ‘Add PDBGrid to PForm’ to create a table with a grid view in your form.

Figure 101: Drag table to form

Figure 102: Smart move

End-User Manual—Version 2.0 Page 112 of 186

• If you want to build your SQL query visually, you can also drag a PQuery Object from the Components Panel into the Project Manager.

Figure 103: Drag PQuery

• After dragging and dropping the PQuery, go to the Property Panel and change the
database property to a database that is already created.

Figure 104: Change Database property

• Now double click the PQuery Object to create a SQL query visually.

End-User Manual—Version 2.0 Page 113 of 186

Figure 105: Visual query editor

PQuery is a handy utility that allows users to run their own SQL query in PIDE environment, we will learn more about PQuery in the next section.

End-User Manual—Version 2.0 Page 114 of 186

Visual Query EditorVisual query editor is a handy tool that not only allows a user to effectively create his/her own SQL query, it also imparts higher level of control and flexibility to the PIDE2 programming environment. After learning how easy it is to create databases and tables in PIDE2, we will learn about the visual query editor that will allow us to create SQL manipulations visually as well as through manual methods.For editing a query in visual query editor, one must have access to a project with a database that can be associated with the PQuery Object. If you do not know how to create a database, follow the topic given earlier in the manual. Follow the guidelines given below to edit a query in visual query editor:
• Open PIDE2 and create a new project with a database, tables and respective fields.

Figure 106: New project with database

• Drag a PQuery Object from the Components Panel to the Project Manager.

End-User Manual—Version 2.0 Page 115 of 186

Figure 107: Drag PQuery

• Select your database name in the Database Property of PQuery.

Figure 108: Select appropriate database name

• Double click the PQuery Object to open visual query editor.

End-User Manual—Version 2.0 Page 116 of 186

Figure 109: Double click PQuery

• At the top, visual query editor has four buttons that are used to perform tasks like
new, open, save, and run.

Figure 110: The four buttons of visual query editor

• While the New Button creates a new query, the Save Button is used to save the existing query in a .SQL format. All the SQL queries saved in .SQL format can be opened in the visual query editor through the Open Button. Lastly, the Run Button is used to execute an SQL query.

End-User Manual—Version 2.0 Page 117 of 186

Figure 111: Save file button

• The main view of visual query editor consists of a Tables pane and three tabs. The tables pane contains of the names of all the tables present in the database that was associated with a PQuery Object.
• The first tab is the Builder Tab that allows users to build SQL query visually.
• The second tab is the SQL Tab that allows a user to write SQL query or modify a SQL query created with the help of builder tab.

Figure 112: The SQl Tab

• The third tab is the Results Tab that shows the result of a query. After a query is created, it should be executed by pressing the run button. The result of the query is displayed in the Result Tab.
End-User Manual—Version 2.0 Page 118 of 186

Figure 113: Results Tab

• Users of PIDE2 can use the builder tab present in visual query editor to build Select,
Insert, Update and Delete SQL queries.

Figure 114: Selecting Query Type

• The Criteria, Selection, Grouping criteria and Sorting Tabs can be used to build advanced SQL queries.

End-User Manual—Version 2.0 Page 119 of 186

Figure 115: Creating advenced query

End-User Manual—Version 2.0 Page 120 of 186

 Select SQL Query and Visual Query EditorOnce with visual query builder, creating and performing SQL manipulations is never a big deal! Just by a few clicks, users can create and manipulate data in tables by using SQL queries. Let us see how to create a SELECT query with the help of visual query builder:
• Open a PIDE project in the project manager view with a database, tables and the associated fields.
• Drag a PQuery Object to the project manager and change its Database Property to point to the database of your project.
• Double click the PQuery Object to open visual query builder and double click on the table you want to work with. This will open a dialog box with the fields present in the table.

Figure 116: Visual query editor

• In the Builder Tab, select the SELECT query option. (SELECT query is the default option).
• Select all the columns you want to view in the SELECT query.

End-User Manual—Version 2.0 Page 121 of 186

Figure 117: Creating select query

• To display the SELECT query without any criteria, simply press the Run button to execute the query and it will display all the results according to the columns that are selected.

End-User Manual—Version 2.0 Page 122 of 186

Figure 118: Run SELECT query

• For adding a condition, press the box in the criteria tab and press Add Condition to create a WHERE condition. Doing this will create two dashes with one equal sign in between them.

End-User Manual—Version 2.0 Page 123 of 186

Figure 119: Add Conditions

• Click the first dash and click the table name to specify the left hand side of your
WHERE clause. In the second dash, double click to fill a field from a table or input your own text.

Figure 120: Creating first part of a condition

• For comparison operator, click the equal sign to select the Comparison Operator of your choice.

End-User Manual—Version 2.0 Page 124 of 186

Figure 121: Choose a comparison operator

• Once your condition is created, click the Run Button to execute the SELECT query with WHERE clause.

Figure 122: Run the query

End-User Manual—Version 2.0 Page 125 of 186

• Advanced users can use the Selection Tab to specify how their fields will be displayed as well as to specify the grouping and aggregate options.

Figure 123: Selection Tab

• Grouping condition can also be specified just like it was specified in the Criteria
Tab.

Figure 124: Grouping Criteria Tab

• The Sorting Tab can be used to specify how the fields listed in your table will look like.

Figure 125: Sorting Tab

End-User Manual—Version 2.0 Page 126 of 186

• After creating a query with the help of visual query editor, users can also switch to the SQL Tab to look at the SQL query created by them. In case the query is deemed to be inappropriate, it can also be changed very easily from the SQL Tab only.

Figure 126: The SQL Tab

End-User Manual—Version 2.0 Page 127 of 186

Insert Query with Visual Query EditorINSERT is one of the most important operations performed by a SQL query. By using the INSERT query, users can insert data into the fields and use that data to extract meaningful information. Let us see how to insert data in a table with the help of visual query builder in PIDE:
• Open a PIDE Project in the project manager view with a database, tables and the associated fields.
• Drag a PQuery Object to the project manager and change its Database Property to point to the database of your project.
• Double click the PQuery object to open visual query builder and double click on the table you want to work with. This will open a dialog box with the fields present in the table.
• Select INSERT in the builder tab and select the fields you want to insert the data in.

Figure 127: Selecting Insert Query

• In the data tab, write the value of the fields you want to input and press the Run
Button to execute the query.

End-User Manual—Version 2.0 Page 128 of 186

Figure 128: Run Query

• After the query has been successfully executed, go to the SELECT option and run a select query to check if the row has been added in the table or not.

End-User Manual—Version 2.0 Page 129 of 186

Figure 129: Select Query

Figure 130: Executing The Select query

End-User Manual—Version 2.0 Page 130 of 186

Update Query with Visual Query EditorUpdating data in tables is a task that is frequented by database administrators and allows them to rectify any mistakes made to the data. Here we will see how to use the UPDATE query in PIDE2 and work with it effortlessly from visual query builder:
• Open a PIDE project with database and PQuery Object already configured for use and double click the PQuery Object to open a visual query editor.
• Here, double click the table you want to work with and select UPDATE in the drop down menu of the Builder Tab.

Figure 131: Choose Update Query

• In the Criteria Tab, click on the box and select Add Condition. This will create two dashes with an equal to sign in between.

End-User Manual—Version 2.0 Page 131 of 186

Figure 132: Add Condition

• Click on the first dash and select the field based on which your UPDATE Query will be executed. Click on equal sign and the second dash to write or select the proper field to create a condition which, if true, would lead to the selection of that row for an update.

Figure 133: Complete condition

• After creating a condition, go to the data tab and enter the data you want to update in the field that satisfies the stated condition. Press the Run Button to execute the query.
End-User Manual—Version 2.0 Page 132 of 186

Figure 134: Input data

• Choose SELECT from the drop down menu in the Builder Tab and run a select query to check if row has been updated or not.

End-User Manual—Version 2.0 Page 133 of 186

Deleting Operation with the help of Visual Query EditorAfter Selecting, Inserting and Updating a row in a table, Deleting is the next most important operation that needs to be implemented for the proper upkeep of a database. Given below are the steps to delete a row from the table with the help of visual query editor in PIDE2:
• Open a PIDE project with database and PQuery Object already configured for use and double click the PQuery Object to open a visual query editor. Here, Select

DELETE option in the Builder Tab. Double click the table you want to work with and check all the fields.

Figure 135: Choose Delete query

• In the criteria tab, click on the box and select Add Condition option to create a condition on which the row will be deleted. This will create two dashes and a comparison operator in between them.

End-User Manual—Version 2.0 Page 134 of 186

Figure 136: Specify criteria

• In the first condition that is created, click the first dash and select the field name.
• Choose the right comparison operator by clicking the equal sign and click the second dash to select or write a condition that needs to be checked.

Figure 137: Run query

• Click the run button and check the table for changes by running the select query in visual query editor.

End-User Manual—Version 2.0 Page 135 of 186

Help File Editor

Help file editor in PIDE2 allows a user to create help files (.hlp). Providing the facility to create your own help files, PIDE is an excellent platform for creating comprehensive help files with all the features present in a usual help file. Users can easily open previously made help files and tweak them according to their choice. While you can create a help file by choosing Help file in the New project window, opening an already created .hlp file will open it in the help file editor so that you can edit all its contents.

Figure 138: Help file editorThe help file editor has many components one can use to create a complete help file. The top layer of the help editor consists of the common components that are used for building a help file.

End-User Manual—Version 2.0 Page 136 of 186

Components can be created in a help file just by clicking these buttons. Given below is a brief of these buttons and their usage:
 The New Topic Button can be used to create a new topic in the help file.
New Folder Button is useful in creating a new folder that can contain all the other components of a help file.
For inserting an image in the help file, use the Image Button.
The Class Button is used to specify a class in the help file.
For specifying a property, the Property Button can be used.
This button signifies a variable.
Method is represented by this button; use it to create help on a method.
The Event Button is used to specify help on an event.

This button is used to specify a Define Element in the help file.
This button is used to Delete a topic in a help file.
This button is used to specify that a topic is Complete.
For Importing Topics from another help topic, use this button.
Use this button for Searching the occurrence of next text in the help file.
This button can be used to Preview the help file.

End-User Manual—Version 2.0 Page 137 of 186

Appearance in Help fileApart from the ones given above, there are also many layout design buttons available in PIDE2 that would allow a user to design the layout of the help file. Just like a text editor, these buttons too allow effective tweaking of the appearance of a help file.
Given below is an explanation of the above buttons:

Use to give a Bold appearance of a tag.
Italics button is used to give an Italics appearance to the text.
Use to Underline a text.
This button is used to Center Align a text.
This button is used to specify a line with some Formatting.
This button is used to specify a Preformatted Text.
This button is used to specify a text that represents Code.
For Linking To Another Topic, use this button.
This button Links An Image with the help file.
The grid button can be used for representing data in a Grid Form.All the buttons given above will create a tag representing the specific appearance button you have clicked. For example, clicking the B or the bold button would create a

text tag which would give a bold appearance to any text that is included within the starting as well as ending tags of the bold tag. Likewise, all these buttons will create tags and anything included within these tags will have the appearance marked by the tags.

End-User Manual—Version 2.0 Page 138 of 186

The Help Editor InterfaceThe Help editor interface is consists of two panes. While the left hand side pane is used to find and include topics in the help file, the right side pane is used to include information in those topics.

Figure 139: Help file editor interfaceFrom the right side pane, a user can easily write:
• The heading of the topic
• Description of the topic
• Parameters to be shown in the help file
• Return value of the component (if any)
• See also contents
• Code examples for better understandingOnce all the above information about a topic is deemed complete, help file can be previewed

End-User Manual—Version 2.0 Page 139 of 186

with the help of the preview help button.
Editing .hlp files in PIDE2For editing help files created in PIDE2:

• Open PIDE2 and open an existing .hlp file that was created in PIDE form the open option in the file menu.
• As the file opens in the help file editor, you will be able to change everything from its

Description, Parameters, Return Values, See Also Text etc.
• After editing a topic, users should mark a topic as Done by pressing the done button or by pressing Ctrl+D key.

Figure 140: Completing a topic

• After all the deemed topics are complete, users can save the .hlp file and preview it by pressing the Preview Help Button.
End-User Manual—Version 2.0 Page 140 of 186

Creating topics from filesWith the help editor in PIDE2, you will also be able to create Help File Topics from .ppl or .xml files automatically. Just by scanning these files, PIDE automatically lists all the objects and classes along with methods, events and other code objects in the topic list. From here, users can edit the various topics individually and add the things that are required in a help file. For adding topics to a help file:
• Open an existing or create a new help file in the help file editor.

Figure 141: Create Help file project

End-User Manual—Version 2.0 Page 141 of 186

• Click the Import/Export menu and select Create topics from file… option.

Figure 142: Select Create topics from file…

• Select an .xml or .ppl file from the import from a file… window. This will automatically scan the file and include the topics contained in the file.

Figure 143: Choose a file

• Now, users can select a topic and edit its properties according to their preference for creating a help file.
End-User Manual—Version 2.0 Page 142 of 186

Figure 144: Fill in the requirements

End-User Manual—Version 2.0 Page 143 of 186

Code Templates In Code EditorCode templates in PIDE provide the functionality to write code in an easier and hassle free way. Just by creating your own code templates or by manipulating the PPL.ctp code template created as the default code template file, users can create a coding environment that is tweaked according to their coding preferences. One of the best examples of using a code example is the use of If condition. In PIDE, whenever a user enters ‘ifi’ and follows it with a Tab key, the text is automatically converted to an ‘if – else’ statement that just needs the user to fill in the required expression and statements.
Using the Default Code TemplateUsing the default PIDE code template is a straightforward process. Follow the example given below to use the default code template:

• Create a new code file project in PIDE by pressing Ctrl+N key or by selecting “Create a new project” from the welcome screen itself.

Figure 145: Creating new project

• Go to the file menu and click Open to open PPL.ctp file from /PCL directory of your
End-User Manual—Version 2.0 Page 144 of 186

PIDE installation.
• Have a closer look at the PPL.ctp file and study the various templates. Notice carefully the <ActiveText> tag, this tag will allow you to call a specific code the way it is specified in the <text> tag.

Figure 146: Code Template

• Now, in the code file create a class by writing #class and press the Tab key. This will automatically write the syntax for a class and would require you to enter the necessary values only.

End-User Manual—Version 2.0 Page 145 of 186

Figure 147: Using Code template

• Instead writing the activate text and hitting the tab key, users can also use the code templates directly by using the navigator panel. Under the Code Templates pane, double click any code template to include that template automatically on the code.

End-User Manual—Version 2.0 Page 146 of 186

Modifying a .ctp or code template fileFor individual needs, users can modify any.ctp or code template file with their own code. Follow the steps given below to write your own template code in a code template file:
• In PIDE, go to file menu and select Open to open the .ctp file from a location in a hard disk.
• Scroll down to the last template of .ctp file and write <Template> to create a new code template tag.

Figure 148: Code Template

• Write the subsequent tag as <Name> tag and write the name of the element you want to create the template of. End this tag with an </Name> tag.
• Next, add the <Category> tag to specify the category of the element. This tag too will end with a </Category> tag.
• As the name suggests, the <Icon> tag specifies an icon for the element whose template is being created. Like every tag, this tag too will end with an ending tag i.e.

</Icon>.
• <ActivateText> tag is the most important tag in the template and it will specify the

End-User Manual—Version 2.0 Page 147 of 186

text with which this template will be called. End this tag with a </ActivateText> tag.
• Lastly, the <Text> tag will contain the text that will be written in place of the text specified in the <ActivateText> tag. This tag will end with </Text>.
• End the template with </Template> tag.
• Save this template by pressing ‘Ctrl+S’ and write the element written in your

<ActivateText> tag with a Tab key to transform it automatically in the text that was specified in the <Text> tag.

End-User Manual—Version 2.0 Page 148 of 186

Creating and using a Code Template fileFollow the guidelines given below to create your own code template files:
• Create a new code project in PIDE2 and save it as a .ctp file under the /PCL folder.

Figure 149: Save project as

• In the file write as many code templates you want to write while following the proper syntax.
• Given below is the syntax for creating a code template:

<Template>

<Name>Name of code</Name>

<Category>Category of code</Category>

<Icon>Icon representing the code</Icon>

<ActivateText>Text that needs to be changed</ActivateText>

<Text>Code that will be used</Text>

</Template>

• After creating your code template, save the file again and restart PIDE2. Alternatively, you can also go to Tools in the standard menu and select the Reload definition files option to reload the file.

End-User Manual—Version 2.0 Page 149 of 186

Figure 150: Reloading Definition Files

• Once in the memory, every .ctp file present in the /PCL folder is used by PIDE2 automatically.

End-User Manual—Version 2.0 Page 150 of 186

The PIDE ShellShell or the Dos prompt is a useful utility that is easier to use and vary capable of providing advanced programming control over the execution of an application. Even if you do not use shell prompt a lot, you will love the way PIDE works just like the dos prompt and allows you to do pretty much everything that one is able to do in a dos prompt. Here we will have a quick look at opening the PPL shell and working with it:
• Open PIDE application and double click the Shell icon to open a PPL shell

Figure 151: Creating new project

• In the PPL shell, you can write any shell command and work with it like you do in dos prompt. Here, the shell prompt will be represented by the location of your PIDE directory.

End-User Manual—Version 2.0 Page 151 of 186

Figure 152: PIDE shell

• Users can also enter other directories by writing CD followed by the directory
name and pressing the enter key.

Figure 153: Working in PIDE shell

• Just like dos prompt, writing the dir command and pressing the enter key would result in a list of all the directories present within the PIDE directory.
End-User Manual—Version 2.0 Page 152 of 186

Figure 154: DIR command in PIDE shell

• Likewise, pressing enter with ls command will list all the contents present in a directory.

End-User Manual—Version 2.0 Page 153 of 186

Figure 155: ls command in PIDE shell

• There are many options for opening files in PIDE. For opening files users can either use the type command or the open command.
• If you want to open files in their own window, use the open command along with the path of the file

End-User Manual—Version 2.0 Page 154 of 186

Figure 156: Opening files in PIDE Shell

Figure 157: File open in different window

• If you want to open files within the shell, use the Type command followed by the path of the file
End-User Manual—Version 2.0 Page 155 of 186

Figure 158: File oprn in PIDE shell

• Just like the dos command prompt, PIDE shell prompt too complies with the CLS
command and allows you to clear everything that is on the screen.

End-User Manual—Version 2.0 Page 156 of 186

Batch Operations In PIDEBatch operations in PIDE is a handy utility that either allows a user to insert new objects with properties assigned to them in a batch manner or allows users to set the properties in of a group of objects in a single go.
• For opening the batch operations, open a new project and use the batch operations button to open batch operations window.
• Users can select the Operation drop down menu to select the operation they want to perform. For doing so, just click the drop down menu and select the Insert new

objects for inserting new objects with properties assigned in a batch manner. For setting the properties for a set of objects, choose the other option i.e. Set Properties.

Figure 159: Access batch operations

End-User Manual—Version 2.0 Page 157 of 186

Figure 160: Batch Operations window in PIDE

• After setting the operation select a classname that you would want to apply a batch operation to.
• After selecting a classname, select the property from the list of available properties by double clicking the property name (alternatively you can also perform drag). Once the property is selected, give a value for and press ok to apply.

End-User Manual—Version 2.0 Page 158 of 186

Figure 161: Setting batch operations

End-User Manual—Version 2.0 Page 159 of 186

Inserting Files With PIDEInserting files in PIDE2 is as easy as a drag and drop operation. With its advanced programming techniques, PIDE2 makes it very for a user to include files from the file system directly to the PIDE project. After inserting the file in the project manager, all one needs to do is to specify the type of file it is. For example, while a database file should be specified as a PDatabase object, a disk image file can be specified as PResource object. Let us look at how to insert files in a project with PIDE2:
• Open a PDIE project in the project manager view.
• From windows explorer, drag a file in the project manager.

Figure 162: Draging files

• The drag operation will enable the SmartMove feature which will ask you to specify which type of object is being inserted. Here select the appropriate object according to the file and its use you are inserting it for.

End-User Manual—Version 2.0 Page 160 of 186

Figure 163: Choosing file type

• Save the project and use the inserted file for other purposes.

End-User Manual—Version 2.0 Page 161 of 186

Package Files With PIDEPackage files contain multiple files that are encrypted to provide extended security and are made easily accessible in PPL2. Here we will learn how easy it is to package files with PIDE.
• Before we go on to package files with projects in PIDE, we will have to open a project. Open PIDE2 and choose any project like a desktop form.

Figure 164: New project

• Once a project is opened, drag a PPackage Object from the file group of
components panel to the Project Manager.

End-User Manual—Version 2.0 Page 162 of 186

Figure 165: Drage PPackage Object

• After you have dragged a PPackage object to the project manager, set its
PackageFilename property to point to a location on the hard disk.

Figure 166: Setting PackageFilename property

End-User Manual—Version 2.0 Page 163 of 186

• Next, set the PackageKey property and specify an encryption key.

Figure 167: Specifying encryption key

• After performing the above steps, use windows explorer and drag files from there to the package object.

Figure 168: Draging files to package

• After you have dragged a file, the SmartMoves feature will ask you to specify the nature of this file. Here you will have to select the PPackageFile option. This will add the file to your package. Just like this file, you can drag as many files as you want from the windows explorer to your package.

End-User Manual—Version 2.0 Page 164 of 186

Figure 169: Select PPackage type object

Figure 170: Package object with files that were dragged

• After including all your files in the PPackage Object, Go to run and press the
Compile Option or press F7 from the keyboard. This will create the package file at the location specified in the PackageFilename Property.

End-User Manual—Version 2.0 Page 165 of 186

Figure 171: Compiling the package

End-User Manual—Version 2.0 Page 166 of 186

Code Collection EditorThe code collection editor in PIDE works by storing various objects so that they can be used by the property of another object. A PListView Object uses code collection editor to its fullest. By using a list of objects in its
Items Property, PListView allows a user to input a huge many items simultaneously. Follow the given guidelines to create items through code editor:

• Create a new Desktop Form project

• Drag a PListVIew Object from the standard controls pane in the components panel to the project manager.

End-User Manual—Version 2.0 Page 167 of 186

• In the property of PListView, double click on the Items Property. This will open the code collection editor.

• The Code Collection Editor consists of four buttons namely, the New Item button, the Delete button, and the Move up or Down button.
• In the code collection editor, click the New Item and double click the item to set its

Name Property. Create as many items you want and give them names before closing the window.

End-User Manual—Version 2.0 Page 168 of 186

• After the code collection editor is closed, run the project to view the items that were created in the code collection editor.

End-User Manual—Version 2.0 Page 169 of 186

Object Binding With PIDEObject binding is a powerful feature that allows a PIDE user to bind or link the values of two different objects. Apart from linking property values of two objects, the ability to link the property value of an object with a variable provides a programmer with extended flexibility and enhanced control over program execution.There are many instances when a programmer needs to create objects that depend on the value of the property of other objects. A popular example would be while changing the theme of the application. When a user changes the color theme of an application, other things like text color, text size, menu bar size, selection color etc will also need to be changed. By binding the values of various properties of the color theme object with other objects of the interface, a programmer can easily create a perfect themed environment.
• For binding the property values of two objects with each other, right click on the source object and select View Binds or press Shift+Ctrl+B to open the Edit Binds

window.

Figure 172: View Binds option

End-User Manual—Version 2.0 Page 170 of 186

• In the Edit Binds window, select the new button to open a ‘new component class’ menu and select pbindobject. The pbindvar option is used to link a variable with the object property.

Figure 173: choosing components class

• Property panel for object binding is divided in two parts i.e. the source and the
target. For binding two objects with each other, fill in all the property values in the given properties.

Figure 174: Source and Target sections

• In the Property Panel, select the SourceOptions property and check or uncheck the property you want. The SourceOptions property consists of four choices, namely,
boAuto – Specifies whether property will change automatically or not

End-User Manual—Version 2.0 Page 171 of 186

boDefault – Specifies whether this is the default value for the target or not
boRead – Specifies whether it will read from the target or not
boWrite – Specifies that the target value will be written to the source property value

• The SourceProperty property specifies the source property that will be linked with the target property.

Figure 175: SourceProperty

• The TargetObject property allows a user to specify the Target Object that will be linked with the Source Object.

End-User Manual—Version 2.0 Page 172 of 186

Figure 176: Selectiong a TargetObject

• The TargetOptions property allows a user to specify the options that will determine the object binding options for the Target Object. Just like SourceOptions, these options govern how the Target Object will function with source object.

Figure 177: Target options

• The TargetProperty property specifies the property of the target object that is linked with the property of the source object.
End-User Manual—Version 2.0 Page 173 of 186

Figure 178: Target property

• After all the object properties are filled, you can close the object binds window and run your project to see the results.

Figure 179: PEdit text binded with PLabel object

End-User Manual—Version 2.0 Page 174 of 186

Packaging for DeploymentThe last step in building an application within PIDE is to deploy it. You can do this through the integrated Compiler.To compile your application,
• Open the project you wish to compile,
• Click the Create Executable Button in the main menu bar. This will open the Create

Executable File Window.

Figure 180: Creating an .exe fileThrough the Create Executable File Window, you can set the following parameters for the compilation of your application:
• Destination Folder—click the selection button to specify the location on your hard drive where you want to save the compiled application
• Icon File—click the selection button to find the icon file, from your hard drive, that you wish to use for the compiled application
• Use compressed runtimes—every PPL application utilizes a set of run-times that enable the compiled application to run. You can check this box to utilize the compressed version of those runtimes. Note: this will require less space for your

compiled application on the target device but also reduce overall performance.

End-User Manual—Version 2.0 Page 175 of 186

Additional SupportFor additional support, including discussion boards, frequently asked questions, and a knowledge base, please visit the http://www.arianesoft.ca/ website.

End-User Manual—Version 2.0 Page 176 of 186

http://www.arianesoft.ca/

Appendix A: Available Application ObjectsThe following application objects are available in the base version:
• PObject
• PAsm
• PMemory
• PScript
• PCustomList
• PList
• PArray
• PObjectList
• PValue
• PValueList
• PApplication
• PComponent
• PConsole
• PThread
• PDialog
• PMatrix
• PArray
• PBitmap
• PGrid
• PImageList
• PlistView
• PTreeView
• PPaintCanvas

End-User Manual—Version 2.0 Page 177 of 186

• PPanel
• PQuickButton
• PShape
• PToolBar
• PToolButton
• PControl
• PFont
• PCanvas
• PForm
• PMenuBar
• PMenu
• PMenuItem
• PGroupBox
• PTimer
• PLabel
• PButton
• PCheckBox
• PRadioButton
• PListBox
• PComboBox
• PEdit
• PMemo
• PProgressBar

End-User Manual—Version 2.0 Page 178 of 186

Appendix B: Figures

Figure 1: Main Interface...11Figure 2: Menu Bar...12Figure 3: Action Buttons...12Figure 4: Components...13Figure 5: Work area...14Figure 6: Project manager...15Figure 7: Code View...17Figure 8: Properties/ Events tab..19Figure 9: Matrix Property Editor..21Figure 10: Color Property Editor..22Figure 11: Surface property editor..22Figure 12: Font property editor..24Figure 13: Create new desktop game..34Figure 14: Drag PSurface to project manager...35Figure 15: Open an image..35Figure 16: Double click GameMap..36Figure 17: Drag PSprite to GameMap...36Figure 18: Change Surface property of PSprite..37Figure 19: Create a move event on GameForm...38Figure 20: Drag PSprite to mouse move event..39Figure 21: Set X and Y parameters of Move method...40Figure 22: Code navigator...41Figure 23: Debugging Console...42
End-User Manual—Version 2.0 Page 179 of 186

Figure 24: Debug Local variables...42Figure 25: Debug Global Variables...42Figure 26: Debug Watch List..43Figure 27: Debug Call Stack..43Figure 28: Debug Stack...43Figure 29: New Project Window...46Figure 30: Opening a file..48Figure 31: Saving a file..49Figure 32: Closing a file..50Figure 33: Code view...51Figure 34: Commenting code...52Figure 35:Before Formatting..52Figure 36: After formatting...53Figure 37: Adding objects..54 Figure 38: Components tab open..55Figure 39: Components tab collapsed ...55Figure 40: Adding color..56Figure 41: Color Selector Window...57Figure 42: Inserted Hexidecimal Color..58Figure 43: Insert Special Characters...59Figure 44: Adding notes...60Figure 45: Textual note...61Figure 46: Procedure list..62Figure 47: Code navigator...63Figure 48: Properties panel..67Figure 49: Selecting Properties...68
End-User Manual—Version 2.0 Page 180 of 186

Figure 50: Events panel..69Figure 51: selecting events..70Figure 52: Visual Editor..72Figure 53: Elements Placed in the Visual Editor..73Figure 54: Visual Editor Placement Tools...74Figure 55: Selected Control in Visual Editor with Properties Open...75Figure 56: Non-Visual Elements in Visual Editor...76Figure 57: Creating New Project...77Figure 58: Events Panel..78Figure 59: Creating an event..78Figure 60: Creating Default Event..79Figure 61: Selecting Events...79Figure 62: Drag to the event...80Figure 63: Choose a method...81Figure 64: Using exper property...82Figure 65: Viewing the source code..84Figure 66: break point window...85Figure 67: Profile Report...87Figure 68:Debug tab...88Figure 69: Debug tab...88Figure 70:Errors tab..88Figure 71: Warnings tab...89Figure 72: Compiler tab..89Figure 73: Components tab...90Figure 74: Components tab hover feature..92Figure 75: Hint Window for Component Properties..93
End-User Manual—Version 2.0 Page 181 of 186

Figure 76: Hint Window with Navigation...94Figure 77: installing a new component..96Figure 78: Uninstalling components...97Figure 79: creating a xml from a .ppl file...98Figure 80: creating a new component package..99Figure 81: Drag a PToolBar...100Figure 82: Drag PProperty to DbNavigator...101Figure 83: Set the Type property...101Figure 84: Set the ClassName property...102Figure 85: Drag four PToolButton Objects...103Figure 86: Double click the buttons to create events..103Figure 87: Select a message..104Figure 88: Select messages for all buttons...105Figure 89: The property panel..106Figure 90: Components Panel...106Figure 91: Creating new project...107Figure 92: Drag a database...108Figure 93: Drag a PTable...108Figure 94: Specify a filename...109Figure 95: Give TableName..109Figure 96: Add PField object..110Figure 97: Specify Property..110Figure 98: Creating Database..111Figure 99: Viewing Table..111Figure 100: insert PDBGrid..112Figure 101: Drag table to form..112
End-User Manual—Version 2.0 Page 182 of 186

Figure 102: Smart move..112Figure 103: Drag PQuery...113Figure 104: Change Database property...113Figure 105: Visual query editor..114Figure 106: New project with database..115Figure 107: Drag PQuery...116Figure 108: Select appropriate database name..116Figure 109: Double click PQuery..117Figure 110: The four buttons of visual query editor..117Figure 111: Save file button...118Figure 112: The SQl Tab..118Figure 113: Results Tab...119Figure 114: Selecting Query Type..119Figure 115: Creating advenced query..120Figure 116: Visual query editor..121Figure 117: Creating select query..122Figure 118: Run SELECT query...123Figure 119: Add Conditions...124Figure 120: Creating first part of a condition...124Figure 121: Choose a comparison operator..125Figure 122: Run the query..125Figure 123: Selection Tab...126Figure 124: Grouping Criteria Tab..126Figure 125: Sorting Tab...126Figure 126: The SQL Tab...127Figure 127: Selecting Insert Query..128
End-User Manual—Version 2.0 Page 183 of 186

Figure 128: Run Query...129Figure 129: Select Query...130Figure 130: Executing The Select query..130Figure 131: Choose Update Query...131Figure 132: Add Condition..132Figure 133: Complete condition...132Figure 134: Input data..133Figure 135: Choose Delete query...134Figure 136: Specify criteria..135Figure 137: Run query..135Figure 138: Help file editor..136Figure 139: Help file editor interface...139Figure 140: Completing a topic...140Figure 141: Create Help file project..141Figure 142: Select Create topics from file…...142Figure 143: Choose a file...142Figure 144: Fill in the requirements...143Figure 145: Creating new project..144Figure 146: Code Template..145Figure 147: Using Code template...146Figure 148: Code Template..147Figure 149: Save project as..149Figure 150: Reloading Definition Files..150Figure 151: Creating new project..151Figure 152: PIDE shell..152Figure 153: Working in PIDE shell..152
End-User Manual—Version 2.0 Page 184 of 186

Figure 154: DIR command in PIDE shell...153Figure 155: ls command in PIDE shell...154Figure 156: Opening files in PIDE Shell...155Figure 157: File open in different window..155Figure 158: File oprn in PIDE shell...156Figure 159: Access batch operations..157Figure 160: Batch Operations window in PIDE...158Figure 161: Setting batch operations...159Figure 162: Draging files...160Figure 163: Choosing file type...161Figure 164: New project..162Figure 165: Drage PPackage Object..163Figure 166: Setting PackageFilename property...163Figure 167: Specifying encryption key..164Figure 168: Draging files to package..164Figure 169: Select PPackage type object...165Figure 170: Package object with files that were dragged..165Figure 171: Compiling the package...166Figure 172: View Binds option..170Figure 173: choosing components class...171Figure 174: Source and Target sections..171Figure 175: SourceProperty...172Figure 176: Selectiong a TargetObject...173Figure 177: Target options...173Figure 178: Target property..174Figure 179: PEdit text binded with PLabel object...174
End-User Manual—Version 2.0 Page 185 of 186

Figure 180: Creating an .exe file...175

End-User Manual—Version 2.0 Page 186 of 186

